Small Stories about Modular Reactors

NuScale’s small modular reactor project on federal land in Idaho, designed to provide electricity to Utah Associated Municipal Power Systems, a joint action agency serving 50 municipal utilities in Utah, Arizona, California, Idaho, Nevada, New Mexico, and Wyoming, has survived another near-death experience. Facing a vote by the participants in its project for six light-water pressurized reactors, totaling 462-MW on the grounds of the Department of Energy’s Idaho National Laboratory near Idaho Falls, 26 of the 27 utility participants agreed to continue with the “Carbon Free Power Project.”

NuScale: 60 MW reactor

The vote came in the face of a steep increase in the project’s estimated “levelized cost of energy” (LCOE) cost last December, rising from $58/WMh to $89/MWh. The total cost for the project is estimated at a bit over $9 billion, but $1.4 billion is offset by DOE funding, which could increase in the future.

The December hike triggered a vote on whether to continue the project. Of the 27 munis participating in the plan, Morgan City, Utah, withdrew its 1.398 MW participation; Parowan City, Utah, reduced its commitment from 3 MW to 2 MW; and Los Alamos increased its share from 2.1 MW to 8.6 MW. That left the total commitment so far about 120 MW, far short of what makes the project economically viable. The current in-service estimate is 2030.

The initial project was a 12-reactor, 720-MW station at a cost of $4 billion, in service in 2026. The cost estimate quickly rose to $6 billion, original participants started dropping out, and NuScale and its contractor Fluor Corp. reworked the reactor design and scaled back the project to 462 MW.

X-energy and DOW have switched the planned location for their four-unit, 320-MW high temperature gas cooled reactor (HTGR) using TRISO billiard-ball-size fuel “pebbles”, from Washington state to an unspecified site on the Gulf Coast, close to a Dow chemical industry facilities.

X-energy of Rockville, Md., is a startup specialist in HTGR technology. DOW, based in Midland, Mich., is a venerable chemical company, founded in 1897. Their planned $2.2 billion nuclear project has $1.2 billion in Department of Energy funding for the power plant and a fuel fabrication plant in Oak Ridge, Tenn. The target is for 2008.

HTGR is an elegant conceptual approach to nuclear, with a mixed practical record. It uses inert helium gas as a coolant, so the plants require water for only boiler feed and makeup. They produce high steam temperatures. The uranium fuel and the graphite moderator are incapsulated in a ceramic material, making them extraordinarily strong. Their advocates bill them as “walk away safe” in a nuclear accident.

TRI-structured ISOtropic
TRISO fuel

The first U.S. HGTR was Peach Bottom on the Susquehanna River outside of Philadelphia. It ran well from 1967 to 1974. It used a solid, “prismatic” fuel combining uranium and thorium with the graphite moderator. The 40-MWe plant produced steam at 1,000 F and 1,450 psig. with a thermal efficiency of 37% and 88% power availability. A small, 13-MW HTGR operated in Julich, Germany, known as AVR, connected to the grid in 1967 and ran until 1988, the first to use the spherical, “pebble-bed” TRISO fuel.

Scaleup of HTGRs has been a problem. In the U.S., Public Service of Colorado built a 330-MW General Atomics reactor. The plant operated fitfully from 1979 to 1989, beset by plumbing problems. It shut at a point where the problems appeared solved, but the economics had changed. Germany scaled up the AVR with the 300-MW pebble-bed THTR, connected to the grid in 1985 and closed in 1989, a victim of financial and political woes, including the nuclear skepticism in the wake of the 1986 Chernobyl disaster.

Scaleup problems may be irrelevant, as HTGRs have operated successfully at small sizes.

Virginia Gov. Glenn Youngkin’s SMR plan hits a roadblock, NBC television station WCBY-TV reports. The Republican governor launched legislation for an SMR for southwestern Virginia, the heart of the state’s struggling coal industry. The Bristol, Va., TV station is in the middle of the coal-rich region. The Washington Post reported, “Virginia Gov. Glenn Youngkin’s (R) energy plan calls for Southwest Virginia to build the nation’s first commercial small reactor. The governor was in Wise County in October promoting the plan at an abandoned mine site. Virginia is among at least eight states pursuing a small reactor.”

Youngkin’s vision crashed in the legislature, which ended its session last week without authorizing SMR provisions. “The actual SMR bill itself, did not get out of conference committee,” Republican Del. Israel O’Quinn told WCBY. “Just couldn’t get an agreement on exactly how to get that out of there.”

Vaclav Smil’s latest book, “Invention and Innovation: A Brief History of Hype and Failure,” offers thoughts on SMR enthusiasm: “In light of the past experience with nuclear promises, the only sensible attitude is to wait and see how many of these announced plans will, even with the added incentive of accelerated decarbonization, become actual working prototypes, and then how many of those will make the second cut to lay the foundations of future commercial opportunities. In any case, no nation has announced any specific, detailed, and binding recommitment to what would have to be a multidecadal program of reactor construction.”

–Kennedy Maize

kenmaize@gmail.com

To subscribe to The Quad Report, click on the email link and type “subscribe” into the Subject line. To unsubscribe, same process, only type “unsubscribe.” I’ll take care of the rest.

To comment: